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Abstract

The calculation of the magnetic field due to a current loop is de-
veloped by first finding the magnetic vector potential and then taking
its divergence. The solution for all points in space requires the use of
elliptic integrals; however, it is shown that for points on the axis of
the loop, this solution is identical to the simpler algebraic solution for
points located on the axis. The specific magnetic field of the UCLA
high school plasma machine is calculated by adding the effects of the
120 current loops that generate the magnetic field of the machine.

1 Elliptic Integrals

In this section we explore two elliptic integrals and their derivatives
that will be important in the calculation of the magnetic field.

The complete elliptic integral of the first kind K(k) is defined as

K(k) =
∫ π

2

0

dα√
1− k2 sin2 α

(1)

and the complete elliptic integral of the second kind E(k) is defined
as

E(k) =
∫ π

2

0

√
1− k2 sin2 α dα. (2)

It is clear from these definitions that

K(0) = E(0) =
∫ π

2

0
dα =

π

2
. (3)
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The derivative of K is given by

dK

dk
=
∫ π

2

0

k sin2 α

(1− k2 sin2 α)
3
2

dα. (4)

Since

k sin2 α

(1− k2 sin2 α)
3
2

=
1

k(1− k2 sin2 α)
3
2

− 1

k
√

1− k2 sin2 α
,

(4) can be written as

dK

dk
=
∫ π

2

0

1

k(1− k2 sin2 α)
3
2

dα−
∫ π

2

0

1

k
√

1− k2 sin2 α
dα. (5)

By (1) the second integral is K
k . It can be shown by comparing power

series, see [1], that

E(k) = (1− k2)
∫ π

2

0

dα

(1− k2 sin2 α)
3
2

and therefore (5) becomes

dK

dk
=

E

k(1− k2)
− K

k
. (6)

The derivative of E is given by

dE

dk
= −

∫ π
2

0

k sin2 α√
1− k2 sin2 α

dα. (7)

Since

− k sin2 α√
1− k2 sin2 α

=

√
1− k2 sin2 α

k
− 1

k
√

1− k2 sin2 α
,

(7) can be written as

dE

dk
=
∫ π

2

0

√
1− k2 sin2 α

k
dα−

∫ π
2

0

dα

k
√

1− k2 sin2 α

which by (1) and (2) becomes

dE

dk
=

E

k
− K

k
. (8)
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2 Magnetic Field of a Current Loop

In this section we derive the equation for the magnetic field due to a
circular loop of current. We will first find the vector potential A from

A =
µ0I

4π

∫
ds
R

. (9)

We will then obtain the magnetic field B by taking the curl of A
according to

B = ∇×A. (10)

2.1 Magnetic Vector Potential

We begin by finding the magnetic vector potential of a loop of wire
with radius a by the methods of [2]. We let the center of the loop be
on the z axis with the loop in a plane parallel to the xy plane and
with a distance h from the x axis. We will find A from (9) at a point
P in the xz plane with coordinates (r, 0, z).

If we let φ be the angle from the x axis to any point on the loop the
coordinates of that point are (a cos φ, a sinφ, h). The distance from P
to any point on the loop is therefore given by

R =
√

(r − a cos φ)2 + a2 sin2 φ + (z − h)2

=
√

r2 − 2ar cos φ + a2(cos2 φ + sin2 φ) + (z − h)2

=
√

r2 + a2 + (z − h)2 − 2ar cos φ.

Since
ds = −a sinφ dφx̂ + a cos φ dφŷ,

from (9) we have

A =
µ0I

4π

[ ∫ 2π

0

−a sinφ dφ√
r2 + a2 + (z − h)2 − 2ar cos φ

x̂+∫ 2π

0

a cos φ dφ√
r2 + a2 + (z − h)2 − 2ar cos φ

ŷ
]
. (11)

For every φ the contribution made to A in the x direction is can-
celed by the contribution from −φ. Therefore, there is no x component
to A and the first term in (11) goes to zero. Furthermore the contri-
bution from φ in the y direction from φ is equal to the contribution
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from −φ. Therefore, instead of integrating the y component of A from
0 to 2π we can integrate from 0 to π and multiply by 2. Finally, if
we switch to cylindrical coordinates the y component becomes the φ
component and (11) becomes

A =
µ0Ia

2π

∫ π

0

cos φ dφ√
r2 + a2 + (z − h)2 − 2ar cos φ

φ̂. (12)

We will now rewrite (12) so that it can be evaluated with elliptic
integrals. The denominator inside the integral can be rewritten as

√
(r + a)2 + (z − h)2 − 2ar(1 + cos φ) =

√
(r + a)2 + z2 − 4ar

(
1 + cos φ

2

)
.

(13)
If we let φ = π − 2α then

cos φ = − cos 2α.

Since cos 2α = 1− 2 sin2 α,(
1 + cos φ

2

)
= sin2 α.

With this substitution and factoring out (r+a)2+(z−h)2 (13) becomes

√
(r + a)2 + (z − h)2

√
1− 4ar

(r + a)2 + (z − h)2
sin2 α.

If we define k as

k =

√
4ar

(r + a)2 + (z − h)2
(14)

then the denominator becomes
2
√

ar

k

√
1− k2 sin2 α. (15)

The numerator inside the integral in (12) can be written as

−(1− 2 sin2 α). (16)

By (15), (16), and the fact that dφ = −2 dα, (12) becomes

A =
µ0Ia

2π

∫ 0

π
2

2(1− 2 sin2 α) dα
2
√

ar
k

√
1− k2 sin2 α

φ̂

=
µ0Ik

2π

√
a

r

[∫ π
2

0

−dα√
1− k2 sin2 α

+
∫ π

2

0

2 sin2 α dα√
1− k2 sin2 α

]
φ̂.(17)
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By (1) The first term in (17) is K(k). For the second term we note
that

sin2 α√
1− k2 sin2 α

=
1
k2

(
1√

1− k2 sin2 α
−
√

1− k2 sin2 α

)
and that therefore the second term becomes

2
k2

[∫ π
2

0

dα√
1− k2 sin2 α

−
∫ π

2

0

√
1− k2 sin2 α dα

]
which by (1) and (2) becomes

2
k2

(K(k)− E(k)).

Therefore (17) becomes

A =
µ0Ik

2π

√
a

r

[
2
k2

(K(k)− E(k))−K(k)
]

φ̂

=
µ0I

2π

√
a

r

[(
2
k
− k

)
K(k)− 2

k
E(k)

]
φ̂. (18)

2.2 Magnetic Field

In this section we take the curl of (18) to obtain B. For a general
vector function in cylindrical coordinates

v = vrr̂ + vφφ̂ + vz ẑ

the curl is given by

∇× v =
(

1
r

∂vz

∂φ
−

∂vφ

∂z

)
r̂ +

(
∂vr

∂z
− ∂vz

∂r

)
φ̂ +

1
r

(
∂

∂r
rvφ −

∂vr

∂φ

)
ẑ.

Since A only has a φ component

∇×A = −∂A

∂z
r̂ +

1
r

∂

∂r
rA ẑ. (19)

We now find the derivatives of k with respect to z and r. From
(14) we see that

∂k

∂z
=

1
2

√
(r + a)2 + (z − h)2

4ar
· −8ar(z − h)
[(r + a)2 + (z − h)2]2

= − 4ar(z − h)
[(r + a)2 + (z − h)2]2 k

= − k2(z − h)
[(r + a)2 + (z − h)2] k

= −k3(z − h)
4ar

(20)
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and

∂k

∂r
=

1
2

√
(r + a)2 + (z − h)2

4ar
·
4a
[
(r + a)2 + (z − h)2

]
− 8ar(z − h)

[(r + a)2 + (z − h)2]2

=
2a

[(r + a)2 + (z − h)2]2 k
− 4ar(r + a)

[(r + a)2 + (z − h)2]2 k

=
2ak

4ar
− k2(r + a)

[(r + a)2 + (z − h)2] k
=

k

2r
− k3(r + a)

4ar
. (21)

We will now find the r component of B. From (18) we see that

−∂A

∂z
= −µ0I

2π

√
a

r

[(
− 2

k2
− 1
)

∂k

∂z
K +

(
2
k
− k

)
dK

dk

∂k

∂z
+

2
k2

∂k

∂z
E − 2

k

dE

dk

∂k

∂z

]
.

Substituting the values from (6), (8), and (20) we have

− ∂A

∂z
= −µ0I

2π

√
a

r

[(
2
k2

+ 1
)

k3(z − h)
4ar

K−(
2
k
− k

)(
E

k(1− k2)
− K

k

)
k3(z − h)

4ar
− 2

k2

k3(z − h)
4ar

E+
2
k

(
E

k
− K

k

)
k3(z − h)

4ar

]
.

Expanding we have

−∂A

∂z
= −µ0I

2π

√
a

r

[(
k(z − h)

2ar
+

k3(z − h)
4ar

)
K− k(z − h)E

2ar(1− k2)
+

k(z − h)K
2ar

+

k3(z − h)E
4ar(1− z2)

− k3(z − h)K
4ar

− k(z − h)E
2ar

+
k(z − h)E

2ar
− k(z − h)K

2ar

]
which simplifies to

−∂A

∂z
= −µ0I

2π

√
a

r

[
k(z − h)

2ar
K +

−2k(z − h) + k3(z − h)
4ar(1− k2)

E

]
= −µ0Ik(z − h)

4π
√

ar3

[
K − 2− k2

2(1− k2)
E

]
. (22)

We now find the z component of B. From (18) we see that

rA =
µ0I

√
ar

2π

[(
2
k
− k

)
K(k)− 2

k
E(k)

]
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and that, therefore,

∂

∂r
rA =

µ0Ia

4π
√

ar

[(
2
k
− k

)
K − 2

k

]
+

µ0I
√

ar

2π

[(
− 2

k2
− 1
)

∂k

∂r
K

+
(

2
k
− k

)
dK

dk

∂k

∂r
+

2
k2

∂k

∂r
E − 2

k

dE

dk

∂k

∂r

]
. (23)

Substituting the values from (6), (8), and (21) we have

∂

∂r
rA =

µ0I

2π

√
a

r

[(
1
k
− k

2

)
K−E

k
+
(
−2r

k2
− r

)(
k

2r
− k3(r + a)

4ar

)
K

+
(

2r

k
− kr

)(
E

k(1− k2)
− K

k

)(
k

2r
− k3(r + a)

4ar

)
+

2r

k2

(
k

2r
− k3(r + a)

4ar

)
E − 2r

k

(
E

k
− K

k

)(
k

2r
− k3(r + a)

4ar

)]
.

(24)

Expanding we have

∂

∂r
rA =

µ0I

2π

√
a

r

[(
1
k
− k

2

)
K−E

k
+
(
−1

k
+

k(r + a)
2a

− k

2
+

k3(r + a)
4a

)
K+

E

k(1− k2)
−K

k
− kE

2(1− k2)
+

kK

2
− k(r + a)E

2a(1− k2)
+

k(r + a)K
2a

+
k3(r + a)E
4a(1− k2)

−

k3(r + a)K
4a

+
(

1
k
− k(r + a)

2a

)
E−E

k
+

k(r + a)E
2a

+
K

k
−k(r + a)K

2a

]
.

(25)

This simplifies to

∂

∂r
rA =

µ0I

2π

√
a

r

[(
−k

2
+

k(r + a)
2a

)
K +

(
1

k(1− k2)
− k

2(1− k2)
−

k(r + a)
2a(1− k2)

+
k3(r + a)
4a(1− k2)

− 1
k

)
E

]
. (26)

Dividing by r to get the z component of B we have

1
r

∂

∂r
rA =

µ0I

2π

√
a

r3

[
k(r + a)− ak

2a
K +

k2
(
−2a− 2(r + a) + k2(r + a) + 4a

)
4ak(1− k2)

E

]

=
µ0Ikr

4π
√

ar3

(
K +

k2(r + a)− 2r

2r(1− k2)
E

)
. (27)
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Since B = ∇×A by (19), (22), and (27)

B(r, z) =
µ0Ik

4π
√

ar3

[
−(z − h)

(
K − 2− k2

2(1− k2)
E

)
r̂ + r

(
K +

k2(r + a)− 2r

2r(1− k2)
E

)
ẑ
]

.

(28)
It is easy to calculate the magnetic field due to the current loop at

a point located on the z axis using the Biot-Savart law

B =
µ0I

4π

∫
ds× R̂

R2
.

In this case ds is perpendicular to R̂ so that ds× R̂ = ds. For every
line element ds the radial component of dB cancels with the radial
component due to the line element on the opposite side of the loop.
Therefore B is only in the z direction and we have

B =
µ0I

4π

cos θ

R2

∫
ds ẑ

where θ is the angle made by R and a. cos θ = a
R and

∫
ds = 2πa so

that
B =

µ0I

4π

a

R3
2πa ẑ.

since
R =

√
a2 + (z − h)2

we have

B =
µ0Ia2

2 [a2 + (z − h)2]
3
2

ẑ. (29)

We now show that the magnetic field for a point along the z axis
calculated in (29) is equivalent to the magnetic field calculated in (28)
for r = 0. We will first show that Br = 0 when r = 0 and then show
that Bz is equal to (29). First we note from (14) that k = 0 when
r = 0. Now we rewrite Br given by (22) to eliminate the r from the
denominator

Br = − µ0I(z − h)
2πr

√
(r + a)2 + (z − h)2

[
K − E

1− k2
+

k2E

2(1− k2)

]
= − µ0I(z − h)

2π
√

(r + a)2 + (z − h)2

[
K

r
− E

r(1− k2)
+

2aE

[(r + a)2 + (z − h)2] (1− k2)

]
.(30)
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Expressing the first two terms inside the braket in (30) with the defi-
nitions of K and E given in (1) and (2) we have

K

r
− E

r(1− k2)
=

∫ π
2

0

dα

r
√

1− k2 sin2 α
−
∫ π

2

0

√
1− k2 sin2 α

r(1− k2)
dα

=
1
r

∫ π
2

0

k2 sin2 α− k2

(1− k2)
√

1− k2 sin2 α
dα

=
4a

(r + a)2 + (z − h)2

∫ π
2

0

sin2 α− 1

(1− k2)
√

1− k2 sin2 α
dα.

Substituting r = 0 for the first two terms we have

4a

a2 + (z − h)2

∫ π
2

0

(
sin2 α− 1

)
dα =

4a

a2 + (z − h)2

[(
α

2
− 1

4
sin 2α

) ∣∣∣∣π
2

0

− π

2

]
=

4a

a2 + (z − h)2
[(π

4
− 0
)
− π

2

]
= − πa

a2 + (z − h)2
. (31)

Letting r = 0, substituting (31) into (30), and from (3) we have

Br = − µ0I(z − h)
2π
√

a2 + (z − h)2

[
− πa

a2 + (z − h)2
+

πa

a2 + (z − h)2

]
= 0.

We now rewrite Bz given by (27) to eliminate the r from the de-
nominator to get

Bz =
µ0I

2πr
√

(r + a)2 + (z − h)2

[
rK +

(
k2(r + a)
2(1− k2)

− r

1− k2

)
E

]
=

µ0I

2π
√

(r + a)2 + (z − h)2

[
K(k) +

(
2a(r + a)

[(r + a)2 + (z − h)2](1− k2)
− 1

1− k2

)
E(k)

]
.

Letting r = 0 we have from (3)

Bz =
µ0I

2π
√

a2 + (z − h)2
π

2

[
1 +

2a2

a2 + (z − h)2
− 1
]

=
µ0Ia2

2 [a2 + (z − h)2]
3
2

.

Since Br = 0,

B =
µ0Ia2

2 [a2 + (z − h)2]
3
2

ẑ

which is the same as (29).
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Figure 1: UCLA high school plasma machine. The coil on the far right is
disconected because it interfered with the plasma source.

3 Magnetic Field Inside Plasma Cham-

ber

In this section we extend the solution for one current loop (28) to the
plasma chamber in the UCLA high school lab. The magnetic field of
the plasma machine is made up of five groups of coils of wire that
surround the chamber, see Fig. 1. Each group has a total of 24 turns
(eight turns long and three turns deep). We will approximate each
turn to be one current loop and add the contributions from each of
the 120 loops.

We set up a cylindrical coordinate system with the origin located
at the end of the chamber opposite the plasma source and the z axis
along the axis of the chamber. We take the radius of each loop of wire
to be the distance from the center of the chamber to the center of the
1.2 cm diameter wire. We let a0 be the radius of the 40 innermost
wires and ∆a be the distance between the centers of two touching
wires. The radius of the 40 middle wires is, therefore, a0 + ∆a and
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Figure 2: Magnetic field inside the plasma chamber.

the radius of the 40 outermost wires is a0 + 2∆a. a0 = 43.4 cm and
∆a is the diameter of a wire and is therefore 1.2 cm.

We let hl be the distance along the z axis from the origin to the
centers of the first three wires in the lth group of wires. Thus, the
distance along the z axis from the origin to the centers of the second
three wires in the lth group of wires is given by hl + ∆a and to the
last three wires by hl +7∆a. For the plasma machine the hl are (from
l = 1 to l = 5) 8.3 cm, 31.2 cm, 43.4 cm, 74 cm, and 84.9 cm.

The magnetic field at one point in the plasma chamber is the sum
of the magnetic field due to each of the 120 current loops. We rewrite
the B(r, z) in (28) to BL(r, z, a, h) to indicate that the field given by
(28) is the field at a point with coordinates (r, φ, z), for any φ, due to
a single current loop with radius a and distance along the z axis h.
The total magnetic field at a point (r, φ, z) is given by

B(r, z) =
5∑

l=1

7∑
j=0

2∑
i=0

BL(r, z, a0 + i∆a, hl + j∆a). (32)

Fig. 2 shows the magnetic field inside the plasma chamber as cal-
culated by (32).
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